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Abstract
In this paper, the history of the discovery of the linear magnetoresistance
in metals by Kapitza from 1928–1929 and its explanation are described.
Actually, Kapitza discovered two different phenomena. One of them, the
linear magnetoresistance at classically large magnetic fields in polycrystalline
samples of metals, having open Fermi surfaces, was explained by Lifshits
and Peschansky in 1958. The other phenomenon is the quantum linear
magnetoresistance appearing in metals, or semimetals, with a small
concentration of carriers and a small effective mass, when only the lowest
Landau band participates in the conductivity. Manifestations of this unusual
phenomenon in different materials are described.

PACS numbers: 72.15.Gd, 72.20.My

1. Discovery of the quantum magnetoresistance

In 1928 Kapitza [1], working in the Royal Mond Laboratory of Sir Ernest Rutherford in
Cambridge (figure 1), published a paper in the Proceedings of the Royal Society, where he
described his device for creating pulsed magnetic fields up to 32 T (320 000 Oe), fantastically
high for that time, and measurements of magnetoresistance of bismuth. The latter varied
linearly with magnetic field at high fields (figure 2). The next year Kapitza found the linear
dependence in a large number of other metals [2]. His discovery became known as ‘Kapitza’s
linear law’.

This phenomenon remained a mystery for many years, since the theory predicted a
quadratic dependence at small fields and saturation at higher fields (see, e.g., [3]):

�ρ ∼
{
ρ0(�τ)2 �τ � 1
ρ0 �τ � 1.

(1)

It existed until the end of the 1950s, when the Ukrainian theorist Ilia Lifshits with his associates
published a series of papers on galvanomagnetic phenomena in classically strong magnetic
fields, when the Larmor radius of an electron moving through a metal in a magnetic field
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Figure 1. Peter Kapitza at the time of his work in Cambridge at the laboratory of Sir Ernest
Rutherford.

becomes smaller than its mean free path. In a single crystal the dependence of the resistance
on magnetic field is extremely anisotropic. In order to compare these predictions with Kapitza’s
measurements, performed on polycrystalline samples, an averaging was performed. It showed
that in cases when the metal had an energy spectrum of electrons with open Fermi surfaces, the
polycrystal would have a magnetoresistance linear in magnetic field [4]. This fitted Kapitza’s
data well, and seemed to solve the mystery, since most of the metals have an open Fermi
surface. People forgot that the first metal, where Kapitza observed a linear magnetoresistance,
was bismuth, which has small and closed Fermi surfaces, and hence, this reasoning does not
apply.

Much later, in 1969, I constructed an exact quantum theory of galvanomagnetic
phenomena in metals, using the field theory technique [5]. Due to the so-called ‘Landau
quantization’ of the electron motion in a magnetic field, all thermodynamic and kinetic
coefficients acquire small corrections, varying periodically with magnetic field (figure 3).
For conventional metals these corrections are small, due to the fact that the ‘Landau bands’,
essential for physical properties, have a large quantum number. Since, however, my technique
was very general, I also considered the ‘extreme quantum case’ where the distance between
the bands, proportional to the magnetic field, was so large that all electrons occupied only the
lowest band, leaving the others empty (figure 4). The resistance for this case varied linearly
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Figure 2. Experimental curves for magnetoresistance perpendicular to the magnetic field of several
Bi single crystals, obtained by Kapitza [1]: (a) at room temperature, (b) at the temperature of liquid
nitrogen.

with magnetic field. At that time I believed that this result was ‘unphysical’, since creation of
sufficiently high magnetic fields seemed impossible.

Since this work is the basis of all the subsequent developments, I want to describe some
details. I used the isotropic model and the representation of the electron Green function
through the eigenfunctions in magnetic field directed along z (units are used with h̄ = 1):

G
(0)
αβ (pz, py, x, x ′, ωm) =

∑
n

ψnα(x − cpy/eH)ψ∗
nβ(x ′ − cpy/eH)

iωm + µ − εn(pz)
. (2)

The most important feature takes place in strong magnetic fields, such that
(eH/m∗c)

/(
p2

0

/
2m∗) � 1 (p0 being the Fermi momentum and m∗ the effective mass).
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Figure 3. Landau bands in an isotropic model for moderate magnetic fields. The horizontal line
corresponds to the chemical potential. Many bands contain electrons.
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Figure 4. Landau bands in the quantum limit. Only the lowest band contains electrons.

In this case only the lowest Landau band contains electrons. The Born approximation fails in
this case, and a summation of diagrams has to be performed, corresponding to figure 5. After
that the self-energy due to scattering becomes∑

(ωm) = NiU0

(
1 + i sgn(ωm)U0

eHm∗

2πcp0

)−1

(3)

(assuming a spin-independent point interaction with impurities: U(r) = U0 δ(r); Ni is the
impurity concentration). The scattering probability is then 1/τ = −2 Im�, and for large fields
it becomes

1

τ
= 4πcp0Ni

eHm∗ . (4)

We can call it ‘unitary limit’ similar to the case without the magnetic field. In this limit the
perpendicular to the field components of the resistivity are

ρxx = ρyy = NiH

πn2
eec

ρxy = RH = H

neec
(5)
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Figure 5. Diagrams to be summed up in the non-Born situation.

where ne = eHp0/(π
2c) is the electron density (we assumed the spin splitting to be small

compared to the Fermi energy). This means linear magnetoresistance and the Hall constant
independent on magnetic field.

The conditions for these results to apply are

ne �
(

eH

h̄c

)3/2

T � eHh̄

m∗c
. (6)

The first is for only the lowest Landau band to participate, and the second is for the temperature
to be lower than the band splitting. For H ∼ 10 T the right-hand side of the first inequality
is 1018 cm−3, whereas the concentration of charge carriers in Bi is of the order of 1017 cm−3.
Due to the small effective mass in Bi, m∗ ∼ 10−2 m0 (m0 being the free electron mass), the
right-hand side of the second inequality is 1000 K. Hence, the conditions for formulae (6)
to describe Kapitza’s data in Bi were fulfilled even at room temperature. This all meant
that in fact Kapitza discovered two new phenomena: the classical linear magnetoresistance
in polycrystals of metals with open Fermi surfaces and the quantum magnetoresistance, as
I called it, in Bi. In 1969 I was not aware of that, and only in 1999, when Chien and his
colleagues at Johns Hopkins University published a paper [6], where the authors, being also
unaware of Kapitza’s discovery, re-established the linear magnetoresistance in Bi, the memory
came back to me. I found Kapitza’s paper and saw that the criteria (6) are fulfilled.

2. Silver chalcogenides

In 1997 an important discovery was made by experimentalists of the Argonne National
Laboratory and the University of Chicago [7]. Studying galvanomagnetic properties of
slightly nonstoichiometric silver chalcogenides, Ag2+δSe and Ag2+δTe with δ ∼ 0.01 they
found a linear magnetoresistance in fields ranging from 10 Oe to 5.5 T without any sign of
saturation (figure 6). This took place at temperatures ranging from 4.5 K to 300 K. The slope of
the linear field dependence decreased with increasing temperature in this range approximately
3 times. The Hall constant did not depend on temperature at T < 100 K and decreased at
higher temperatures.

With ideal stoichiometry, δ = 0, or small nonstoichiometry, at low temperatures these
substances are intrinsic semiconductors with a narrow direct gap [8, 9]. The gap is sample
dependent and lies in the range of several tens of meV. The effective mass of carriers is of
the order of 10−2 m0, where m0 is the free electron mass [10]. At higher temperatures (T =
133 ◦C for Ag2Se) these substances undergo a phase transition into a phase which behaves
more like a metal. This also concerns the nonstoichiometric (or doped) compounds, so from
the finite value of the Hall constant we can conclude that they are more similar to the high
temperature phase of the stoichiometric compounds.
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Figure 6. Magnetoresistance curves for Ag2+δSe at different temperatures, obtained in [7].

In formula (5) ρxx = ρyy is the total resistance, whereas the experimental result [7] can be
described as

ρ = ρ0 + aH (7)

and this formula is valid not only at magnetic fields of several Tesla but down to 10 Oe.
According to what was said before (formula (1)), there is no way to explain such a behaviour
assuming that the metal is homogenous. Indeed, if we substitute in the condition (6) the
electron concentration obtained from the Hall measurements, ne ∼ 1017 cm−3, we get H > 2 T.

The only possibility is to assume that the real samples used in the experiments are highly
inhomogeneous, so that they contain small regions with a large concentration of excess silver
atoms and, correspondingly, higher electron concentration, imbedded into regions with a
much smaller electron concentration where the extremal quantum situation takes place. For
such a structure one could get the formula (7), however one would have to assume that
the concentration in the poorly doped regions has the order of 1012 cm−3, i.e. ∼10−10 per
atom, or less. This can be obtained from the condition (6) and the experimental result that
the dependence of the magnetoresistance deviates from linearity only at H < 10 Oe. Since
the overall atomic concentration of excess silver atoms is of the order of 1%, it seems that
most of these atoms form metallic clusters. For an inhomogeneous system the calculation
of the Hall constant requires more precise characterization of the material, and therefore
the experimentally obtained ‘effective concentrations’ of the order of 1017 cm−3 cannot be
calculated unambiguously. However, even these concentrations corresponding to ∼10−5

electrons per atom are much less than the concentration of the excess silver atoms; this shows
the trend.

There are, however, other concerns. At small fields the Landau level spacing becomes
smaller than T. For a quadratic energy spectrum at 10 Oe it is (in K)

h̄eH

m∗ckB
∼ 10−3

(m0

m∗
)

K

where kB is the Boltzmann constant, and m0 the mass of the free electron. If one uses the value
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Figure 7. Transition from a narrow-gap semiconductor to a gapless semiconductor.

of m∗/m0 ∼ 10−2 given in the literature [10], one gets 10−1 K, which is too small, since the
linear magnetoresistance at 10 Oe was observed at T = 4.5 K.

Since the problem seems completely hopeless for an ordinary approach, some very unusual
path has to be taken [11]. In [9] an idea was proposed about the high temperature α-phase
of Ag2Se. Due to the increased mobility of silver ions a substantial disorder appears which
creates ‘tails’ in both, the conduction band and the valence band. Eventually the bands overlap,
and the substance becomes metallic. It should be mentioned that according to experimental
data the gap is direct. In [12] it was concluded that in Ag2Te with increasing temperature
a phase transition from a narrow-gap semiconductor to a gapless semiconductor takes place
(figure 7). One could guess that since the main reason for this change of the spectrum is
disorder, the same could happen, as a result of doping, and not of increased mobility (the ions
move slowly, and they are always static from the viewpoint of electrons); this conclusion is
supported by the finite Hall constant. Under these conditions the nonstoichiometric compound
cannot be treated as a semiconductor with carriers in the bands resulting from doping, e.g.,
Ge and Si, but the start must be made from a different phase, which is closer to a gapless
semiconductor [13]. The latter is a substance where at T = 0 a completely filled valence band
matches an empty conduction band. From the small value of the effective mass [10] it seems
more likely that the energy spectrum in both bands is linear. Indeed, since a small effective
mass can appear only in some restricted regions of the momentum space, it has to grow with
energy (momentum). If the valence band contacts the conduction band, or slightly hybridizes
with it, the spectrum becomes even closer to linearity.

The possibility of a linear spectrum was analysed in [15] (type I). It can be a consequence
of a cubic symmetry without an inversion centre and can also happen at some random point in
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Figure 8. Landau bands for a model of a gapless semiconductor described by the Hamiltonian (8).

the reciprocal space at proper ‘tuning’, e.g., by pressure or doping. An example of the latter
was analysed in [16].

We will consider here the simplest spectrum of this kind, just in order to have an example
of what can happen in such a substance. It corresponds to a double representation of a cubic
group T or O, and its Hamiltonian can be written as

H =
∫

ψ+v
(
σ

(
p − e

c
A

))
ψ dV (8)

where σ i are the Pauli matrices, and p the momentum operators. The velocity v can be assumed
of the usual order of magnitude: v ∼ 108 cm s−1. In the absence of the magnetic field we get
two branches of the spectrum with energies ε = vp,−vp. Suppose that the magnetic field is
along z, and we chose the vector potential Ay = Hx. The electronic wavefunctions will have
two components satisfying the equations

−i
∂

∂z
ψ1 +

(
−i

∂

∂x
− ∂

∂y
+ i

eH

c
x

)
ψ2 = ε

v
ψ1

(9)(
−i

∂

∂x
+

∂

∂y
− i

eH

c
x

)
ψ1 + i

∂

∂z
ψ2 = ε

v
ψ2.

Since the equations contain explicitly only x, we will search solutions in the usual form

ψ1,2 = ψ1,2(x) eipyy+ipzz. (10)

The eigenvalues of equations (9) are (see figure 8):

ε(+)
n = v

(
p2

z +
2eHn

c

)1/2

ε(−)
n = −v

(
p2

z +
2eHn

c

)1/2

. (11)
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Corresponding normalized eigenfunctions have the form:

ψ
(+)
n1 = 1√

2

(
1 +

pz(
p2

z + 2neH/c
)1/2

)1/2

ψn

ψ
(+)
n2 = − i√

2

(
1 − pz(

p2
z + 2neH/c

)1/2

)1/2

ψn−1

(12)

ψ
(−)
n1 = 1√

2

(
1 − pz(

p2
z + 2neH/c

)1/2

)1/2

ψn

ψ
(−)
n2 = i√

2

(
1 +

pz(
p2

z + 2neH/c
)1/2

)1/2

ψn−1

where ψn are the usual normalized eigenfunctions of a free electron in a magnetic field:

ψn = (2nn!)−1/2(β/π)1/4 e−(β/2)[x−(py/β)]2
Hn[

√
β(x − py/β)]. (13)

Here β = eH/c, and Hn are Hermite polynomials.
Formulae (12) describe the eigenfunctions for n �= 0. In the case n = 0 the eigenfunctions

are

ψ
(+)
01 = θ(pz)ψ0 ψ

(+)
02 = 0 ψ

(−)
01 = θ(−pz)ψ0 ψ

(−)
02 = 0. (14)

This situation, when for a given spin projection a solution exists only for momenta of a definite
sign, happens in different unrelated problems, e.g., in vortex cores.

We assume that in the undoped substance at zero temperature all the negative bands are
filled and the positive bands are empty (see [13]). We will assume also that at temperatures
and levels of doping under consideration only the bands ε

(+)
0 = v|pz| and ε

(−)
0 = −v|pz| will

contain charge carriers. The necessary condition will be established later. Imagine that the
doping corresponds to the electron density ne. This means that the density of electrons in the
band ε

(+)
0 minus the density of holes in the band ε

(−)
0 must be equal to ne:

eH

πc

∫ ∞

0
([e(vpz−µ)/T + 1]−1 − [e(vpz+µ)/T + 1]−1)

dpz

2π
= ne. (15)

We took here into account two projections of the electron spin and the fact that the spin splitting
µB H can be neglected. It was also important to remember that, according to (11) only the
electron states with pz > 0 and the hole states with pz < 0 are available. From condition (12)
we obtain

µ = 2π2necv

eH
. (16)

We see that the chemical potential does not depend on temperature, and this means that at all
temperatures the electron system is described by the Fermi distribution.

The condition on temperature replacing (6) is

T < v
√

eHh̄/c. (17)

If we substitute H ∼ 10 Oe, we get T < 10 K, and this corresponds to the measurement
conditions of [7]. With larger H the lower temperature boundary also rises, so that at 1 T
we get T < 300 K, and this is also quite satisfactory. The condition for the electron density
remains the same, as given by (6), and it was discussed previously.
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We must be aware that for the model under consideration the quantity ne is only the
difference between densities of electrons and holes, entering, as we will see below, the Hall
constant. Both types of carriers contribute to the conductivity, and their densities can be
considerably larger than ne. For example, the density of electrons is

ne = eH

2π2c

∫ ∞

0
[e(vpz−µ)/T + 1]−1 dpz = eHT

2π2cv
ln(1 + eµ/T ).

At low temperatures, when µ � T it is equal to ne but at higher temperatures and magnetic
fields it becomes much larger.

I will not describe all the details of this calculation. The result for the components of the
conductivity tensor is

σxx = σyy = 1

2π

(
e2

ε∞v

)2

ln ε∞
ecNi

H
σxy = neec

H
. (18)

It was assumed that the scatterers are ions with a screened Coulomb potential. The screening
proved to be weak (κ � (eH/c)1/2), provided that ε∞, the dielectric constant of the ion cores,
is large. The corresponding component of the resistivity tensor is

ρxx = σxx

σ 2
xx + σ 2

xy

. (19)

It is most likely that (e2/ε∞v)2Ni � ne, and hence

ρxx = ρyy = 1

2π

(
e2

ε∞v

)2

ln ε∞
Ni

ecn2
e

H ρxy = H

neec
. (20)

As we argued previously, the resistivity (20) is only a part of the total resistivity, and is due
to regions with very small concentration of electrons (term aH in (7)). It indeed depends
linearly on H. The interesting feature is that it formally does not depend on temperature.
From experimental data [7] we see that it, actually, has to depend on temperature, decreasing
approximately three times, as the temperature varies from 4.5 K to 300 K. This rather small
decrease of ρ, instead of a marked increase, demonstrates that it is not due to appearance
of phonon scattering but is most likely associated with the change of doping (ne). This
is qualitatively confirmed by the fact that the decrease with temperature of the observed
resistivity and of the Hall constant starts at the same temperature: 60–70 K in Ag2+δSe, and
100–130 K in Ag2+δTe (figure 9). As we argued already, in an inhomogeneous sample with
an unknown internal structure the ‘effective’ Hall constant cannot be calculated. The electron
concentration per atom obtained from it has to be somewhere between δ ∼ 10−2 and the
limiting value from our estimate (6), i.e. ∼10−10. As we mentioned, the experimental value
was ∼10−5.

The fact that both, the resistivity and the Hall constant, decrease with temperature
corresponds qualitatively to formulae (20). Since the doping mechanism is rather unusual
it is difficult to predict the temperature dependence of ne. Most likely, it will grow with
temperature but much slower than the familiar exponent; this corresponds to the observations.
Since the resistance depends not only on ne but also on Ni, it is hard to compare at this stage
samples with different δ.

3. Linear magnetoresistance from small electron groups

Linear magnetoresistance was also found at large fields and low temperatures in rare earth
diantimonides with large Fermi surfaces [17]. The latter can be deduced from the Shubnikov–
de Haas oscillations which were observed simultaneously with the linear magnetoresistance
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Figure 9. Temperature dependence of the resistance at several magnetic fields and the Hall constant
for Ag2+δTe.

at large fields and lead to an estimate of the electron atomic concentration of the order
of 1. Measurements of the Hall constant (S Bud’ko, private communication) lead to the same
conclusion. The classical theory at large fields [4, 18] predicts in this case a saturation of
resistance, or a quadratic growth with H for specific orientations. In the same paper [17]
different possible explanations of the linear dependence were discussed with the conclusion
that all of them are unlikely. Since at present no details of the electron energy spectrum of these
substances are known, we will propose a model and demonstrate that the linear dependence
can be due to quantum magnetoresistance, which can dominate under certain conditions.

Imagine that apart from the large main part of the Fermi surface, it contains a small
pocket, for which the conditions (6) are fulfilled. Since this requires a small effective mass,
the most natural would be the vicinity of a transition, where a gap between two bands appears
at some momentum. At the transition point the bands touch each other; close to the matching
point the spectrum is linear, and hence the effective mass is zero. Close to the transition the
mass remains small. Such a situation is more common in layered metals, e.g., in graphite (the
calculation for a graphite-type spectrum was performed in [19], and it also leads to a linear
magnetoresistance). Rare earth diantimonides have also a layered structure.

Electrons on the most of the Fermi surface can be treated classically. In [18] it was found
that the classic conductivity tensor for an odd metal in a strong magnetic field, such that
�τ � 1, where τ is the scattering time, and � = eH/(m∗c) the Larmor frequency (m∗ is the
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‘cyclotron mass’, usually m∗ ∼ m0), has the form

σ c
ik =




γ 2ac
xx γ ac

xy γ ac
xz

γ ac
yx γ 2ac

yy γ ac
yz

γ ac
zx γ ac

zy ac
zz


 (21)

where γ = (�τ)−1 � 1, and ac
ik are of the order of the conductivity at zero field.

The conductivity in the quantum limit for the isotropic case is

σ
q

ik = Niec

πH
(22)

(see [5]). In the general case the quantum conductivity of the small pocket can be presented
as σ

q
xx = ciγ a

q
xx, σ

q
yy = ciγ a

q
yy , where ci is the atomic concentration of scattering defects,

and the field-independent constant a
q

ik has the same order of magnitude as the ac
ik in (21). The

conductivities from both electron groups add up. In the case, if not only �τ � 1 but also
ci�τ � 1, σ

q
xx dominates over σ c

xx .
Since τ ∝ c−1

i , this condition depends only on H, and can be presented, as Qeffr
2
H

/
a4 � 1,

where Qeff is the electron scattering cross section, rH = (c/eH)1/2 the magnetic radius, and
a the interatomic distance. Due to weakness of the pseudopotential for the electron–impurity
interaction, this condition can be fulfilled at accessible fields, e.g., if Qeff ∼ 10−18 cm2,H >

10 T. The resistivity is in this case (according to Onsager’s principle, σ c
xy = −σ c

yx)

ρxx = (σik)
−1
xx = σq

yy

/(
σ c

xy

)2
(23)

and similarly for ρyy.
We substitute the anisotropic formula corresponding to (22) for σ

q

ik and σ c
xy =

(ne − nh)ec/H , as obtained in [18], where ne and nh are the densities of electrons and
holes proportional to the volumes of the momentum space surrounded by parts of the Fermi
surface, corresponding, respectively, to smaller and larger energies inside. Then we obtain a
linear magnetoresistivity

ρα(n) = fα(n)NiH

π(ne − nh)2ec
(24)

where ρα(n) are the main values of the resistivity tensor in the plane normal to n = H/H ,
and fα(n)are some functions of the order of unity.

For example, in case of an axially symmetric spectrum

ε = p2
x + p2

y

2mx

+
p2

z

2mz

(25)

the Landau bands are

εn(pz) = eh̄H q1/2(θ)

mxc

(
n +

1

2

)
+

p2
z

2mzq(θ)
(26)

q(θ) = cos2 θ + (mx/mz) sin2 θ (27)

and θ is the angle between the magnetic field and the z-axis. The main axes perpendicular
to the field are y, normal to the plane defined by z and the field, and the axis x′ in that plane,
perpendicular to the field. The main values fα are

fx ′ = q(θ) fy = q−1(θ). (28)
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A different situation appears in even metals, where ne = nh. Then, according to [18],

σ c
ik =




γ 2ac
xx γ 2ac

xy γ ac
xz

γ 2ac
yx γ 2ac

yy γ ac
yz

γ ac
zx γ ac

zy ac
zz


 . (29)

Under the same condition, as before, namely, c1�τ � 1, the components of σ
q

ik will be larger
than all the essential components of σ c

ik , and we obtain

ρα = 1

σα

= πH

fα(n)ecNi

. (30)

It is interesting to mention that in this case the resistance decreases with increasing
defect concentration. This is due to the fact that in the quantum limit the conductivity across
the magnetic field is due to hopping of the electron from a quantized orbit centred along one
line parallel to the field to another one, and this can happen only as a result of scattering. In
the last case, ne = nh , the Hall components are of the order of γ 2 ac , and the resistivity is just
the reciprocal of conductivity. This is also the case for very clean bismuth.
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